EFFICIENCY OF BOLIVIAN HYDROCARBON RESOURCE DEVELOPMENT: CASE STUDY OF A MEGA-FIELD IN THE CONTEXT OF REGIONAL MARKETS AND POLICY FRAMEWORK INCENTIVES

Sponsored by the Scholarship for Scientific Sovereignty
Ministry of Education of Bolivia

Thesis Dissertation
Juan Pablo Sarmiento
March 2017
Bolivia is a natural gas producer and exporter (60MMm3/d in 2015)
About 80% goes to Argentina and Brazil
20-year long contracts (Brazil, 1999; Argentina, 2006), Prices indexed to oil, ToP and DoP Clauses
Contracts expiring in 2019 (Brazil) and 2027 (Argentina)
Revenues from natural gas sales account for 50% of Bolivian total exports in 2015
Motivation

- Provide a quantitative example of current challenges in the hydrocarbon sector for the Bolivian government
 - Supply and demand gas looming
 - Reserves declining
 - Limited exploration investments
 - Competition in export markets
- Evaluate effectiveness of incentives and fiscal regime
- Support justification of policy with numbers (reference to political opposition and general public)

Incentives

- Production coming from few fields and production gap
- Reserves decreasing, investments efforts not enough
- Competition: LNG, Unconventionals, Offshore
Thesis Objectives

• Production forecasting of a representative mega-field
• Quantify the impact of the hydrocarbon fiscal regime change on historic NPV distribution
• Determine the future proportion of the NPV for the government and the contractor under different price scenarios
• Determine if the 2015 Incentives Law encourages drilling activities in existing fields
Agenda

1) Production Forecasting
2) Pricing Scenarios & Regional Natural Gas Markets
3) Fiscal Systems Impact
4) Results
1. Production History and Forecast
San Alberto Field

• Quick facts
 – OGIP= 5.2 Tcf (gas only)
 – First production: January 2001
 – Naturally fractured gas-condensate reservoir

• Geological setting
 – Located in the Southern Sub-Andean Zone in the Chaco Basin
 – Zone characterized by north trending narrow anticlines.
 – Steep structures with dips close to 90 degrees
 – Producing formations of the Early Devonian: Huamampampa, Santa Rosa and Icla
Why San Alberto?

• The project has lived through two fiscal systems
• It has a considerable NGL production, subject to incentives
• Representative of the 3 mega-fields that account for 70% of natural gas and condensate production (similar contracts, history, properties)
Production History

• Production started in January 2001
• Plateau: 400 MMscfd
• 9 wells drilled, 3 wells were planned to be drilled in 2015-2019
Production Forecast

• Decline Curve Analysis
 – Least square method with Arps equations

\[
q = q_i \times (1 + b \times D_i \times t)^{-\frac{1}{b}}
\]

\[
N_P = \frac{q_i^b}{(1 - b) \times D_i} \times q_i^{1-b} - q^{1-b}
\]

\[
\min \sum (N_{p,\text{calculated}} - N_{p,\text{historic}})^2
\]

• Results DCA per well-basis
 – Not satisfactory: Di close to 0, b greater than 5
 – 2 wells in early life
 – Almost no decline in others
 – Change in operating conditions to maintain flow rate
Production Forecast

- Steep decline starts in 2014
- DCA performed for the aggregated field production for the months corresponding to the declining period
Production Forecast

- Regression fits reasonably the flow rates and cumulative production

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Natural Gas</th>
<th>Condensate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qi</td>
<td>428,952</td>
<td>7,024</td>
</tr>
<tr>
<td>Di</td>
<td>0.279</td>
<td>0.346</td>
</tr>
<tr>
<td>b</td>
<td>0.676</td>
<td>0.654</td>
</tr>
</tbody>
</table>
Production Forecast

• DCA for the field production

• Cumulative production corresponds to a RF= 42% (gas only)
2. Natural gas pricing, regional markets and demand scenarios
Natural Gas Pricing

- Prices in the domestic market are fixed and subsidized ($1.1/MMBTU)
- Indexed to a basket of Fuel Oils
- They can be correlated to the WTI oil price
- The real sale price is the weighted average of the prices to the domestic and foreign markets
- In order to obtain it, we need to know the volumes directed to each market.
Historic Price Correlations: Export Markets

- Oil indexed Price (basket of fuel Oils)
 \[P_{G,Br} = P_i \times (0.5 \times FO_1 + 0.25FO_2 + 0.25 \times FO_3) \]
- They can be correlated with a linear regression

[Graphs showing correlations between gas prices and oil prices for Argentina and Brazil with regression lines and correlation coefficients]
Forward Price Scenarios: 2016-2029

• Price scenarios ($/bbl): 40, 60, 80, 100, 120 in 2020.

• Prices for natural gas to Brazil and Argentina calculated with correlations.
Regional Markets: Argentina

Domestic: Unconventional
- 801.5 TCF of technically recoverable shale gas
- Gas Plan: Incentives of $7.5 /MMBTU
- $16 billion investment to reach for self-sufficiency

Imports Bolivia
- 20 year contract, it ends in 2027
- Scaling volumes: 27.7 MMm3/d in 2021
- Take or Pay clauses

LNG Imports
- 2 regasification plants: Bahia Blanca and Escobar
- 14.1 MM/m3d regasification capacity
- Seasonal: In winter for residential consumption
Regional markets: Brazil

Domestic: Offshore
- Growing gas domestic production
- Technical challenges: ultra-deep, high CO2
- Liberalization of the market

Imports Bolivia
- Duration: 20 year contract, it ends in 2019
- Quantity: 30.5MM/m3d
- Take or Pay clauses

LNG Imports
- 3 regasification plants and 1 in construction
- 41 MM/m3d regasification capacity + 19.5 MMm3/d
- Seasonal
Demand Scenarios and Weighted Average Pricing

• Low Demand Scenario
 – Take or Pay Quantities for Brazil and Argentina
 – Renewal with Brazil for half of the quantity of current contract
 – 7% increase in Bolivian market

• High Demand Scenario
 – Maximum Quantities for Brazil and Argentina
 – 7% increase in Bolivian market + Petrochemicals
3. Fiscal Systems Impact
Workflow

Fiscal conditions

Input
- Royalties & Taxes
- Contracts
- Hydrocarbon Production
- CAPEX & OPEX, Depreciation
- Transport and Abandonment Costs

Output
- Rate of Return
- Net Present Value
- Contractor and Government Take

ECONOMIC MODEL

Market conditions
- Hydrocarbon Price
Legislation changes

– Production revenue split of the San Alberto field has been subject to three different fiscal regimes

1. 1996-2007
 - Concessionary system
 - 18% Royalties
 - Indirect taxes: (On profits, transactions, remittances, surtax, VAT)

2. 2007-Present
 - PSC/Service contract
 - 50% Royalties
 - Indirect Taxes (Elimination of surtax)
 - Allows Cost Recovery
 - Introduces YPFB Share f(B, q)

3. 2015
 - Flexibility of norms and regulations
 - Law of incentives
 - 0 to 30$/bbl incentive for additional condensate production
1. Concessionary system
2001-2006

- Value added tax (VAT)
- Transaction tax (IT)
- Corporate profit tax (IUE)
- Remittance tax (IRUE)
- Surtax
2. PSC/Service contract 2007 onwards

Cost recovery limit: 60% of net revenues
3. Incentives

Incentives Fund → Contractor

- **Incentives for condensate production**

Contractor → YPFB

- **12%**

YPFB → Government

1. Gross Revenue (GR)
2. Royalties
3. Royalties
4. National Tax on Hydrocarbons (IDH)
5. National Tax on Hydrocarbons (IDH)
6. a. Profit Share: Contractor
6. b. Profit YPFB Participation
7. Indirect Taxes
8. Indirect Taxes - YPFB
9. Net Cash Flow ($us)
10. Expected Monetary Value
4. RESULTS
Fiscal regime impact: past NPV split (2001-2016)

- Growth of the government take from 56% to 88%
- Royalties are the major source of income, followed by the corporate tax (IUE) in 2001-2006, and the YPFB Share in 2007-2016. Minor role of taxes that depend on the contractor’s profit.
Forward economics under different price scenarios (2016-2029)

- The government take is around 90% for all price scenarios; except for $40/bbl price scenario with 96%
- NPV grows as price does ($900 million-$1,200 million)
- Contractor IRR hardly varies (17.8%-18.1%)
Historic, low revenues with high contractor take followed by a low contractor take percentage but cash flow balanced by higher revenues.

Period 2015-2016, steep drop in revenues.

Period 2017-2029, low production, extra revenue of price increase absorbed by YPFB Participation. Lowest price scenario results in months in the red for the contractor.
YPFB Share impact on Contractor Take

- As cost recovery index (B) increases and production decreases, YPFB share increases.
- Contractor take is limited by YPFB share.
Feasibility of future drilling activities

- 3 wells planned in 2015-2019, decision to drill the first well studied
- 1st month of production assumed in January 2017
- Initial rate of production 30 MMscfd
- Step 1) Evaluate Impact of incentives
- Step 2) Evaluate EMV based on probability of success for development wells

\[I_t = (-0.6398 \times WTI_t + 47.345) \times Q_t \]

\[27.11 < WTI_t < 74 \]

\[30 > I_t > 0 \]
Step 1: Impact of the incentives (2017-2026)

- Government: the extra revenue exceeds the incentives fund and the incentives to the company
- The incentives disbursed to the company don’t exceed the incentives fund

<table>
<thead>
<tr>
<th>Price Scenario</th>
<th>Available Incentives Fund: 12% of National tax on Hydrocarbons since 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>$40/bbl</td>
<td>$64,679,470</td>
</tr>
<tr>
<td>$60/bbl</td>
<td>$90,590,779</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Price Scenario</th>
<th>Incentives to Company</th>
<th>Government Extra Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>$40/bbl</td>
<td>$22,458,531</td>
<td>$181,343,910</td>
</tr>
<tr>
<td>$60/bbl</td>
<td>$11,396,235</td>
<td>$282,717,043</td>
</tr>
</tbody>
</table>
Step 2: Impact of incentives on EMV (2017-2026)

- The EMV is plotted against probability of dry hole.
- For wells costs, the $40/bbl price scenario EMV is negative without incentives and positive after incentives.
- The $60/bbl price scenario EMV is positive for both well costs.
- The incentives are effective for this assumed probability of failure.
Historic probability of success of development wells: 82%
Conclusions

• First period (2001-2006) of a fairly equal share (56-44) with a bigger share of taxes on profits.
• Second period (2007 onward), new fiscal regime designed to maximize the government take (88%), especially in the mega-fields (YPFB share tables and 60% cost recovery limit). Still profitable for the company due to high commodity prices and production peak.
• Third period: Lower future revenues due to decline of production, lower commodity prices. Unattractive to operate during the mature phase due to a growing government take through YPFB share (especially unattractive in a low price environment, months in the red for the $40/bbl price). Variable share inefficient in low price scenarios.
• The incentives encourage drilling decision under all considered price scenarios by providing a positive EMV for the contractor for the historic probability of success. If drilled, additional production from the mega-fields provide time for exploration and development activities of new fields.
Thank you for your attention. Any questions?